LTC2900 [Linear Systems]

36V Nano-Current Two Input Voltage Monitor; 36V纳米双电流输入电压监视器
LTC2900
型号: LTC2900
厂家: Linear Systems    Linear Systems
描述:

36V Nano-Current Two Input Voltage Monitor
36V纳米双电流输入电压监视器

监视器
文件: 总16页 (文件大小:237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2960  
36V Nano-Current  
Two Input Voltage Monitor  
FEATURES  
DESCRIPTION  
The LTC®2960 is a nano-current, high voltage two input  
voltage monitor, ideally suited for multicell battery ap-  
plications. External resistive dividers configure custom  
comparator thresholds. The supervisory circuit monitors  
the ADJ input and pulls the RST output low when the input  
drops below threshold. A reset timeout period delays the  
return of the RST output to a high state when the input  
rises above the threshold. The spare comparator allows  
voltageconditionstobedetectedwitheitheranon-inverting  
n
850nA Quiescent Current  
n
Operating Range: 2.5V < V < 36V  
CC  
n
1.5% (Max) Accuracy Over Temperature  
n
Adjustable Reset Threshold  
n
Wide Temperature Range (–40°C to 125°C)  
+
n
n
n
Adjustable IN /IN Threshold  
Manual Reset Input  
Compact 2mm × 2mm 8-lead DFN and  
TSOT-23 (ThinSOT™) Packages  
+
input, IN (LTC2960-1/LTC2960-3) or an inverting input,  
APPLICATIONS  
IN (LTC2960-2/LTC2960-4). A manual reset (MR) input  
is provided for external activation of the reset output.  
n
Portable Equipment  
n
Battery Powered Equipment  
Other options provided on the LTC2960-1/LTC2960-2 in-  
cludearesettimeoutperiodselectpin,RT,toselectbetween  
15ms or 200ms reset timeout periods. The LTC2960-3/  
LTC2960-4 have a fixed 200ms reset timeout period. The  
RST and OUT outputs are available with active pull-up cir-  
cuitstoanoutputlogicsupplypin(LTC2960-3/LTC2960-4)  
or 36V open-drain outputs (LTC2960-1/LTC2960-2).  
n
Security Systems  
Automotive Systems  
n
LTC2960 Option Table  
Option  
Inputs  
Reset Timeout Period  
15ms/200ms  
15ms/200ms  
200ms  
Output Type  
36V Open-Drain  
36V Open-Drain  
Active Pull-up  
Active Pull-up  
+
LTC2960-1  
LTC2960-2  
LTC2960-3  
LTC2960-4  
ADJ/IN  
ADJ/IN  
ADJ/IN  
ADJ/IN  
+
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners.  
200ms  
TYPICAL APPLICATION  
Battery and Regulator Monitor  
Supply Current vs Supply Voltage  
1200  
6V < V < 8.4V  
IN  
MR=5V, 27C  
V
OUT  
LTC3632  
1.8V  
DC/DC  
Li-Ion  
4.2V  
+
R2  
R4  
900  
600  
300  
0
6.04M  
1.3M  
GND  
C1  
0.1μF  
50V  
C2  
1μF  
LTC2960-3  
V
DV  
CC  
CC  
+
IN  
RST  
RESET  
LOW BATTERY  
R1  
402k  
Li-Ion  
4.2V  
OUT  
ADJ  
+
MR  
GND  
R3  
402k  
2960 TA01  
0
8
16  
V
24  
(V)  
32  
40  
CC  
POWER-FAIL FALLING THRESHOLD = 6.410V  
RESET FALLING THRESHOLD = 1.693V  
2960 TA01a  
2960f  
1
LTC2960  
ABSOLUTE MAXIMUM RATINGS  
(Notes 1 & 2)  
Input Voltages  
Average Currents  
RST, OUT ........................................................... 5mA  
Operating Ambient Temperature Range  
V , RT, MR .......................................... –0.3V to 40V  
CC  
DV ........................................................ –0.3V to 6V  
CC  
+
ADJ, IN , IN ......................................... –0.3V to 3.5V  
Output Voltages (LTC2960-1/LTC2960-2)  
LTC2960C................................................ 0°C to 70°C  
LTC2960I.............................................–40°C to 85°C  
LTC2960H.......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
RST, OUT ............................................... –0.3V to 40V  
Output Voltages (LTC2960-3/LTC2960-4)  
RST, OUT (DV 1.6V)......... –0.3V to (DV + 0.3V)  
RST, OUT (DV = GND) ....................... –0.3V to 6.3V  
CC  
CC  
TSOT-23 Package .............................................300°C  
CC  
PIN CONFIGURATION  
TOP VIEW  
+
1
2
3
4
8
7
6
5
IN /IN  
TOP VIEW  
V
CC  
+
RT/DV  
ADJ  
MR  
IN /IN  
1
8 V  
CC  
CC  
9
ADJ 2  
MR 3  
GND 4  
7 RT/DV  
6 RST  
CC  
RST  
OUT  
GND  
5 OUT  
DC8 PACKAGE  
8-LEAD (2mm × 2mm) PLASTIC DFN  
TS8 PACKAGE  
8-LEAD PLASTIC TSOT-23  
T
= 150°C, θ = 195°C/W  
JA  
T
= 150°C, θ = 80.6°C/W  
JA  
JMAX  
JMAX  
EXPOSED PAD (PIN 9) PCB GND  
CONNECTION OPTIONAL  
ORDER INFORMATION  
Lead Free Finish  
TAPE AND REEL (MINI)  
LTC2960CDC-1#TRMPBF LTC2960CDC-1#TRPBF  
LTC2960IDC-1#TRMPBF LTC2960IDC-1#TRPBF  
TAPE AND REEL  
PART MARKING  
LFZZ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
8-Lead (2mm × 2mm) Plastic DFN  
LFZZ  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC2960HDC-1#TRMPBF LTC2960HDC-1#TRPBF  
LTC2960CDC-2#TRMPBF LTC2960CDC-2#TRPBF  
LFZZ  
LGBC  
LGBC  
LGBC  
LFSF  
LTC2960IDC-2#TRMPBF  
LTC2960IDC-2#TRPBF  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC2960HDC-2#TRMPBF LTC2960HDC-2#TRPBF  
LTC2960CDC-3#TRMPBF LTC2960CDC-3#TRPBF  
LTC2960IDC-3#TRMPBF  
LTC2960IDC-3#TRPBF  
LFSF  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC2960HDC-3#TRMPBF LTC2960HDC-3#TRPBF  
LTC2960CDC-4#TRMPBF LTC2960CDC-4#TRPBF  
LFSF  
LGBF  
LTC2960IDC-4#TRMPBF  
LTC2960IDC-4#TRPBF  
LGBF  
–40°C to 85°C  
–40°C to 125°C  
LTC2960HDC-4#TRMPBF LTC2960HDC-4#TRPBF  
LGBF  
2960f  
2
LTC2960  
ORDER INFORMATION  
Lead Free Finish  
TAPE AND REEL (MINI)  
LTC2960CTS8-1#TRMPBF LTC2960CTS8-1#TRPBF LTFZY  
LTC2960ITS8-1#TRMPBF LTC2960ITS8-1#TRPBF LTFZY  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
8-Lead Plastic TSOT-23  
8-Lead Plastic TSOT-23  
8-Lead Plastic TSOT-23  
8-Lead Plastic TSOT-23  
8-Lead Plastic TSOT-23  
8-Lead Plastic TSOT-23  
8-Lead Plastic TSOT-23  
8-Lead Plastic TSOT-23  
8-Lead Plastic TSOT-23  
8-Lead Plastic TSOT-23  
8-Lead Plastic TSOT-23  
8-Lead Plastic TSOT-23  
TEMPERATURE RANGE  
0°C to 70°C  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC2960HTS8-1#TRMPBF LTC2960HTS8-1#TRPBF LTFZY  
LTC2960CTS8-2#TRMPBF LTC2960CTS8-2#TRPBF LTGBB  
LTC2960ITS8-2#TRMPBF LTC2960ITS8-2#TRPBF  
LTGBB  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC2960HTS8-2#TRMPBF LTC2960HTS8-2#TRPBF LTGBB  
LTC2960CTS8-3#TRMPBF LTC2960CTS8-3#TRPBF LTFSD  
LTC2960ITS8-3#TRMPBF LTC2960ITS8-3#TRPBF  
LTFSD  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTC2960HTS8-3#TRMPBF LTC2960HTS8-3#TRPBF LTFSD  
LTC2960CTS8-4#TRMPBF LTC2960CTS8-4#TRPBF LTGBD  
LTC2960ITS8-4#TRMPBF LTC2960ITS8-4#TRPBF  
LTGBD  
–40°C to 85°C  
–40°C to 125°C  
LTC2960HTS8-4#TRMPBF LTC2960HTS8-4#TRPBF LTGBD  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes specifications that apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C, VCC = 7V, DVCC = 3.3V unless otherwise noted (Note 2).  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
2.5  
TYP  
MAX  
36  
UNITS  
l
l
V
V
V
Input Supply Operating Range  
V
CC  
CC  
V
V
Undervoltage Lockout  
Undervoltage Lockout Hysteresis  
V Rising  
CC  
1.85  
2.3  
V
mV  
UVLO  
CC  
CC  
100  
l
l
I
CC  
V
Input Supply Current  
MR = 5V, V = 36V, 40°C ≤ T ≤ 85°C  
400  
400  
850  
850  
1250  
2000  
nA  
nA  
CC  
CC  
A
MR = 5V, V = 36V, 40°C ≤ T ≤ 125°C  
CC  
A
l
l
DV  
DV Input Supply Operating Range  
1.6  
5.5  
50  
V
CC  
CC  
I
DV Input Current  
CC  
RST = OUT = LOW DV = 5.5V  
nA  
DVCC  
CC  
+
THRESHOLD ADJUSTMENT INPUTS: ADJ, IN /IN  
+
l
l
V
ADJ/IN Input Threshold  
Monitored Voltage Falling  
Monitored Voltage Rising  
394  
394  
400  
400  
406  
406  
mV  
mV  
TH  
IN Input Threshold  
+
l
l
l
l
l
V
V
V
V
ADJ to IN /IN Threshold Matching  
ADJ Threshold Hysteresis  
2
10  
6
15  
mV  
mV  
mV  
mV  
μs  
THM  
Monitored Voltage Rising  
Monitored Voltage Rising  
Monitored Voltage Falling  
8
RHYS  
+
+
IN Threshold Hysteresis  
18  
18  
80  
20  
25  
HYS  
IN Threshold Hysteresis  
20  
25  
HYS  
t
I
Under Voltage Detect to RST, OUT Falling  
V = V –40mV  
170  
500  
UV  
TH(LKG)  
TH  
l
l
Input Leakage Current  
V = 420mV, 40°C≤ T ≤ 85°C  
0.1  
0.1  
1
10  
nA  
nA  
A
V = 420mV, 40°C ≤T ≤ 125°C  
A
2960f  
3
LTC2960  
ELECTRICAL CHARACTERISTICS The l denotes specifications that apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C, VCC = 7V, DVCC = 3.3V unless otherwise noted (Note 2).  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CONTROL INPUTS: MR, RT  
l
l
l
l
l
l
V
V
Control Input Threshold RT  
Control Input Threshold MR  
MR Minimum Detectable Pulse Width  
Propagation Delay to RST Falling  
Manual Reset Open Voltage  
Manual Reset Low Current  
Input Leakage Current  
0.4  
0.4  
20  
1.4  
1.4  
V
V
RT  
MR  
t
t
μs  
μs  
V
PW  
PD  
Manual Reset Falling  
1
7
20  
4
V
MR Open, MR Load = 100nA  
2.6  
–0.35  
MR  
I
I
MR = 400mV, V 2.5V  
–1  
–3  
μA  
MR  
LK  
CC  
l
l
RT = 15V  
MR = 15V  
100  
100  
nA  
nA  
STATUS OUTPUTS: RST, OUT  
l
l
V
OL  
Voltage Output Low  
V
CC  
V
CC  
= 1.2V, I = 10μA (LTC2960-1/LTC2960-3)  
= 3V, I = 500μA  
25  
100  
100  
400  
mV  
mV  
l
V
Voltage Output High  
I = –100μA (LTC2960-3/LTC2960-4)  
0.7•DV  
V
OH  
CC  
l
l
l
I
Leakage Current, Output High  
V = 5.5V  
50  
100  
50  
nA  
nA  
nA  
OH  
V = 15V (LTC2960-1/LTC2960-2)  
V = 5.5V, DV = GND  
CC  
l
l
I
t
Output Short-Circuit Current  
Reset Timeout Period  
RST = GND DV = 6V (LTC2960-3/ LTC2960-4)  
0.8  
0.8  
3
3
mA  
mA  
SC  
CC  
OUT = GND DV = 6V (LTC2960-3/ LTC2960-4)  
CC  
l
l
l
LTC2960-3/LTC2960-4  
RT Input High  
RT Input Low  
140  
140  
10  
200  
200  
15  
280  
280  
25  
ms  
ms  
ms  
RST  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2. All currents into pins are positive; all voltages are referenced to  
GND unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Supply Current vs Supply Voltage  
MR Current vs MR Voltage  
Supply Current vs MR Voltage  
1500  
1200  
900  
600  
300  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= 7V  
CC  
125°C  
90°C  
V
= 7V  
CC  
V
= 2.5V  
CC  
27°C  
–45°C  
V
= 2.5V  
CC  
2
0
8
16  
24  
32  
40  
0
1
2
3
4
5
1
3
4
5
0
V
(V)  
MR VOLTAGE (V)  
MR VOLTAGE (V)  
CC  
2960 G01  
2960 G02  
2960 G03  
2960f  
4
LTC2960  
TYPICAL PERFORMANCE CHARACTERISTICS  
MR Rising Threshold/Open  
Voltage vs VCC  
Normalized Reset Timeout Period  
vs Temperature  
Comparator Overvoltage/  
Undervoltage Glitch Immunity  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
4.0  
3.0  
2.0  
1.0  
0.0  
+
ADJ/IN /IN  
= 7V  
V
= 7V  
CC  
V
CC  
2.4  
1.9  
1.4  
0.9  
0.4  
MR OPEN VOLTAGE 27°C  
MR INPUT THRESHOLD 27°C  
2.5  
3.0  
3.5  
V
4.0  
(V)  
4.5  
5.0  
–50 –25  
0
25  
50  
75 100 125  
0.1  
1
10  
100  
TEMPERATURE (°C)  
COMPARATOR OVERDRIVE (%)  
CC  
2960 G04  
2960 G05  
2960 G06  
ADJ, IN+, INThreshold  
vs Temperature  
Voltage Output HIGH vs  
Pull-Down Current (RST/OUT)  
430  
420  
410  
400  
390  
380  
370  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
125°C  
+
V
90°C  
27°C  
–45°C  
HYS  
V
V
RHYS  
TH  
V
HYS  
=7V  
CC  
V
CC  
=3.3V  
DV  
–50 –25  
0
25  
50  
75 100 125  
0
–0.2  
–0.4  
–0.6  
–0.8  
TEMPERATURE (°C)  
PULL-DOWN CURRENT(mA)  
2960 G07  
2960 G08  
Voltage Output HIGH vs  
Pull-Down Current (RST/OUT)  
Voltage Output LOW vs  
Pull-Up Current (RST/OUT)  
2.0  
1.6  
1.2  
0.8  
0.4  
0
2.0  
1.6  
1.2  
0.8  
0.4  
0
125°C  
90°C  
125°C  
90°C  
27°C  
27°C  
–45°C  
–45°C  
=7V  
CC  
=7V  
CC  
V
CC  
V
CC  
=1.6V  
=3.3V  
DV  
DV  
0
–20  
–40  
–60  
–80  
0
1
2
3
4
5
PULL-DOWN CURRENT(μA)  
PULL-UP CURRENT (mA)  
2960 G08  
2960 G09  
2960f  
5
LTC2960  
PIN FUNCTIONS  
ADJ: Reset Threshold Adjustment Input. Tie to resistive  
divider to configure desired reset threshold.  
OUT: (LTC2960-1/LTC2960-3) Pulls low when monitored  
+
voltage falls below the IN threshold. Released when  
+
the IN voltage rises above its threshold by 5%. For the  
DV : (LTC2960-3/LTC2960-4) Logic Supply Input. Used  
CC  
LTC2960-3, OUT is driven by DV when logic high. OUT  
CC  
for setting the logic swing of the RST and OUT outputs.  
is open drain if DV is grounded. Leave open if unused.  
CC  
Useful for interfacing with logic voltages different from  
(LTC2960-2/LTC2960-4)OUTpullslowwhenthemonitored  
V . Bypass DV with 0.1μF to GND. Grounding DV  
CC  
CC  
CC  
voltage rises above the IN threshold. Released when  
allows OUT and RST to act as open drain outputs.  
monitoredvoltagefallsbelowIN thresholdby5%. Forthe  
ExposedPad(DFNOnly):Exposedpadmaybeleftfloating  
or connected to device ground.  
LTC2960-4, OUT is driven to DV for a logic high. OUT  
CC  
is open drain if DV is grounded. Leave open if unused.  
CC  
GND: Device ground.  
RST:ResetOutput. Pullslowwhenmonitoredvoltagefalls  
below the reset (ADJ) threshold. RST is released after  
monitored voltage exceeds the reset threshold plus 2.5%  
hysteresis and after reset timeout period has expired. For  
IN : (LTC2960-2/LTC2960-4) IN Threshold Adjustment  
Input. Tie to resistive divider to configure required thresh-  
old. Tie to GND if unused.  
the LTC2960-3/LTC2960-4, RST is driven to DV for a  
CC  
+
+
IN : (LTC2960-1/LTC2960-3) IN Threshold Adjustment  
Input. Tie to resistive divider to configure required thresh-  
old. Tie to GND if unused.  
logic high. RST is open drain if DV is grounded. Leave  
CC  
open if unused.  
RT: (LTC2960-1/LTC2960-2) Reset Timeout Period Se-  
MR: Manual Reset Input. Attach a push-button switch or  
logic signal between this input and ground. A logic low  
on this input pulls RST low. When the MR input returns to  
logic high, RST returns high after a reset timeout period  
has expired. Leave open if unused.  
lection Input. Tie to GND for 15ms delay. Tie to V for  
CC  
200ms delay.  
V : Power Supply Input. When V falls below the falling  
CC  
CC  
UVLO threshold, the outputs are pulled low. If V falls  
CC  
below 1.2V the logic state of the outputs cannot be guar-  
anteed. Bypass V with 0.1μF to GND. Use appropriate  
CC  
voltage rating for bypass capacitor.  
2960f  
6
LTC2960  
BLOCK DIAGRAM  
RT  
DV  
CC  
LTC2960-1/LTC2960-2  
LTC2960-3/LTC2960-4  
V
CC  
400mV  
REFERENCE  
0.4V  
REGULATOR  
1μA  
MR  
RST  
ADJ  
+
RESET  
DELAY  
0.4V  
LTC2960-2/LTC2960-4  
OUT  
+
+
IN (LTC2960-1/LTC2960-3)  
IN (LTC2960-2/LTC2960-4)  
LTC2960-1/LTC2960-3  
GND  
2960 BD  
TIMING DIAGRAM  
+
IN /OUT TIMING  
+
V
+ V  
TH  
HYS  
TH  
V
+
V
IN  
OUT  
IN /OUT TIMING  
V
HYS  
TH  
V
+ V  
TH  
V
IN  
OUT  
ADJ/RST TIMING  
V
+ V  
TH  
RHYS  
TH  
V
t
t
V
ADJ  
RST  
RST  
RST  
MR  
2960 TD  
t
PD  
2960f  
7
LTC2960  
APPLICATIONS INFORMATION  
VOLTAGE MONITORING  
THRESHOLD CONFIGURATION  
TheLTC2960monitorsvoltageappliedtoitsinputsIN /IN  
+
The LTC2960 is a voltage supervisor with a wide operating  
voltagerangeupto36Vwithonly850nAquiescentcurrent.  
The supervisor has two outputs, RST and OUT that pro-  
vide voltage monitoring capabilities for system power-up,  
power-downandbrown-outconditions. Built-inhysteresis  
and a reset timeout period ensure that fluctuations due to  
load transients or supply noise do not cause chattering  
of the status outputs. The LTC2960 can provide reset and  
voltage status signals to a microprocessor based system  
or can alternatively be used as an Under Voltage Lock Out  
(UVLO) for DC/DC switchers or LDOs for control over a  
battery operated system.  
andADJ.Aresistivedividerconnectedbetweenamonitored  
voltage and ground is used to bias the inputs. Figure 1  
demonstrateshowtheinputscanbemadedependentupon  
a single voltage (V1). Only three resistors are required.  
To calculate their values, specify desired falling reset (V )  
R
+
+
+
and IN (V ) thresholds with V > V . For example:  
IN  
IN  
R
+
V
IN  
= 6.4V, V = 6V  
R
V1  
LTC2960-1/  
LTC2960-3  
R3  
ADJ  
RST  
If the monitored voltage drops below the reset threshold,  
RST pulls low until the ADJ input rises above 0.4V plus  
2.5% hysteresis. An internal reset timer delays the return  
of the RST output to a high state to provide monitored  
voltage settling and initialization time. The RST output is  
typically connected to a processor reset input.  
R2  
R1  
+
IN  
OUT  
2960 F01  
+
IfthemonitoredsupplyvoltagefallstotheIN (LTC2960-1/  
Figure 1. Configuration for Single Voltage Monitoring  
LTC2960-3)threshold,thesparecomparatorpullsOUTlow.  
+
OUT remains low until the IN input rises above 0.4V plus  
The solution for R1, R2 and R3 provides three equations  
and three unknowns. Maximum resistor size is governed  
by maximum input leakage current. For the LTC2960,  
the maximum input leakage current below 85°C is 1nA.  
For a maximum error of 1% due to both input currents,  
the resistor divider current should be at least 100 times  
the sum of the leakage currents, or 0.2μA. At the reset  
5% hysteresis. OUT is typically used to signal preparation  
for controlled shutdown. For example, the OUT output  
may be connected to a processor nonmaskable interrupt  
(NMI). Upon interrupt, the processor begins shutdown  
procedures such as supply sequencing and/or storage/  
erasure of system state in nonvolatile memory.  
If the monitored supply voltage rises to the IN threshold  
threshold, V1 = 6V, R  
= 8MΩ where:  
SUM  
(LTC2960-2/LTC2960-4), the spare comparator pulls OUT  
R
= R1 + R2 + R3  
SUM  
low. OUT remains low until the IN falls below 0.4V minus  
+
5% hysteresis. The LTC2960-2/LTC2960-4 operates as an  
undervoltage and overvoltage monitor.  
Both the falling reset and IN thresholds are 0.4V, so:  
VTH RSUM 0.4V8MΩ  
R1=  
=
= 500k  
Few, ifany, externalcomponentsarenecessaryforreliable  
V +  
6.4V  
IN  
operation. However, a decoupling capacitor between V  
CC  
The closest 1% value is 499k. R2 can be determined  
from:  
and ground is recommended (0.01μF minimum). Use a  
capacitor with a compatible voltage rating.  
VTH RSUM  
0.4V 8MΩ  
R2 =  
– R1=  
– 499k  
VR  
6V  
R2 = 34.33k  
2960f  
8
LTC2960  
APPLICATIONS INFORMATION  
The closest 1% resistor value is 34k. R3 is easily obtained  
from:  
to a user defined voltage up to 36V with a resistor. The  
open-drainpull-upvoltagemaybegreaterthanV .Select  
CC  
a resistor compatible with desired output rise time and  
load current specifications. Figure 3 demonstrates typical  
LTC2960-1 OUT output behavior. When the status outputs  
are low, power is dissipated in the pull-up resistors.  
R3 = R  
– R1 – R2 = 8M – 499k – 34k  
SUM  
R3 = 7.467MΩ  
The closest 1% resistor value is 7.5MΩ. Plugging the  
standard values back into the equations yields the design  
values for the falling reset and IN voltages:  
7.5  
+
6
+
V
= 6.4V, V  
= 6.028V  
IN  
RST  
Figure 2 demonstrates how the inputs can be biased  
to monitor two voltages (V1, V2). In this example, four  
resistors are required. Calculate each divider ratio for the  
4.5  
3
desired falling threshold (V ) using:  
FT  
1.5  
0
RnB  
RnA VTH  
V
V
FT  
0.4V  
FT  
=
– 1=  
– 1  
0
1.5  
3
4.5  
(V)  
6
7.5  
In Figure 2, OUT is tied back to the MR input, making the  
state of the RST output dependent upon both V1 and V2. If  
V1 and V2 are both above the configured falling threshold  
plushysteresis, RSTisallowedtopullhigh. Ifindependent  
operation of the status outputs is desired, simply omit the  
OUT and MR connection.  
V
CC  
2960 F03  
Figure 3. OUT vs VCC (LTC2960-1) Externally Configured for 6V  
Threshold with RST Tied to VCC Through Pull-up Resistor  
The outputs of both the LTC2960-3 and LTC2960-4 can be  
configured as either low voltage active pull-up or open-  
drain. This is done by tying the DV pin to either a supply  
or GND. Using the active pull-up configuration, DV tied  
V1  
V2  
CC  
LTC2960-1/  
R2B R1B  
LTC2960-3  
CC  
to a supply, lowers power dissipation by eliminating the  
static current drawn by pull-up resistors when the outputs  
are low and improves output rise time. In Figure 4(a), an  
LTC2960-3 has active pull-up outputs configured by tying  
ADJ  
RST  
+
IN  
OUT  
MR  
DV toa1.6Vto5.5Vsupply.InFigure4(b),theLTC2960-3  
CC  
2960 F02  
R2A R1A  
hasopen-drainoutputsconfiguredbytyingtheDV pinto  
CC  
ground. When DV is connected to ground both outputs  
CC  
are open-drain and pull-up resistors are required.  
Figure 2. Dual Voltage Monitoring  
Some applications require RST and/or OUT outputs to  
be valid with V down to ground when DV is tied to  
CC  
CC  
V . Active pull-up satisfies this requirement with the ad-  
CC  
SELECTING OUTPUT LOGIC STYLE  
dition of an optional external resistor from the output to  
ground. The resistor provides a path for leakage currents,  
preventing the output from floating to undetermined volt-  
ages when connected to high impedance (such as CMOS  
logicinputs). Theresistorvalueshouldbesmallenoughto  
The LTC2960 status outputs are available in two options:  
open-drain (LTC2960-1/LTC2960-2) or active pull-up with  
theDV pinreplacingtheRTpin(LTC2960-3/LTC2960-4).  
CC  
The open-drain option allows the outputs to be pulled up  
2960f  
9
LTC2960  
APPLICATIONS INFORMATION  
provideeffectivepull-downwithoutexcessivelyloadingthe  
pull-up circuitry. A 100k resistor from output to ground is  
satisfactoryformostapplications.Whenthestatusoutputs  
are high, power is dissipated in the pull-down resistors.  
and MR is a solution to this issue. The MR input can be  
pulled to 36V maximum and will not affect the internal  
circuitry. Input MR is often pulled down through the use  
of a pushbutton switch.  
If V falls below the falling UVLO threshold, the outputs  
CC  
SELECTING THE RESET TIMEOUT PERIOD  
are pulled to ground. The outputs are guaranteed to stay  
lowforV ≥1.2Vregardlessoftheoutputlogicconfigura-  
CC  
UsetheRTinput(LTC2960-1/LTC2960-2)toselectbetween  
two fixed reset timeout periods. Connect RT to ground for  
tion. When V < 1.2V, the active pull-up output behaves  
CC  
similarly to an open-drain output with a pull-up resistor.  
a 15ms timeout. Connect RT to V for a 200ms timeout.  
CC  
The reset timeout period occurs after the ADJ input is  
drivenabovethresholdandtheMRinputtransitionsabove  
its logic threshold. After the reset timeout period, the RST  
output is allowed to pull up to a high state as shown in  
LTC2960-3  
DV  
CC  
1.6V TO 5.5V  
Figure 5. The RT input is replaced by the DV input in  
CC  
0.4V  
OUT  
+
the LTC2960-3/LTC2960-4 options and the reset timeout  
period defaults to 200ms.  
+
IN  
ADJ  
(a). PUSH-PULL CONFIGURATION  
LTC2960-3  
15ms  
RST, RT = GND  
DV  
CC  
200ms  
6.3V MAX  
RST, RT = V  
CC  
2960 F05  
0.4V  
OUT  
+
Figure 5. Selectable Reset Timeout Period  
+
IN  
EXTERNAL HYSTERESIS  
+
+
2960 F04  
The LTC2960 IN comparator hysteresis is 20mV (V  
),  
HYS  
(b). OPEN-DRAIN CONFIGURATION  
or 5% referred to V . Certain applications require more  
TH  
Figure 4. LTC2960-3 (LTC2960-4) RST and OUT Outputs are  
than the built-in native hysteresis. The application sche-  
matic in Figure 6 adds one additional resistor (R6) to a  
typical attenuator network. The procedure below is used  
to determine a value for R6 to provide an increase over  
the native hystereis. In this example, it is desired to double  
the native hysteresis from 300mV to 600mV and achieve  
a falling threshold of 6V.  
Configurable as Push-Pull or Open-Drain  
MANUAL RESET INPUT  
When ADJ is above its reset threshold and the manual  
reset input (MR) is pulled low, the RST output is forced  
low. RSTremainslowfortheselectedresettimeoutperiod  
after the manual reset input is released and pulled high.  
The manual reset input is pulled up internally through a  
1μA current source to an internal bias voltage (see Elec-  
trical Characteristics). If external leakage currents have  
the ability to pull down the manual reset input below its  
Before including R6, the rising threshold (V ) is 6.293V  
R
while the falling threshold (V ) is 5.993V. The hysteresis  
F
referred to V is calculated from:  
A
R4  
R5  
VHYST VA) = V  
1+  
=20mV15 = 300mV  
(
PHYS  
logic threshold, a pull-up resistor placed between V  
CC  
2960f  
10  
LTC2960  
APPLICATIONS INFORMATION  
V
V
The falling threshold can be restored to the original value  
by reducing the value of R5. Under the assumption that  
the addition of R6 has a negligible impact on the rising  
threshold, a new R4/R5 ratio can be calculated as shown:  
A
B
LTC2960-3  
DV  
R4  
681k  
CC  
R4  
R5  
VR  
6.6V  
=
– 1=  
– 1= 14.71  
VTH + V+  
+
IN  
OUT  
420mV  
(
)
HYS  
R5  
48.7k  
R6  
6.81M  
Given the ratio of R4/R5, the closest 1% resistor value for  
R5 is 46.4k. With the actual resistor values now known,  
the final thresholds can be calculated by plugging the  
2960 F06  
values into the equations above for V and V to obtain:  
R
F
Figure 6. External Hysteresis  
VR = 6.626V, V = 6.010V, V  
= 616mV  
F
HYST  
The addition of R6 allows OUT to sink or source current  
+
As a result of the added current component through R6  
an error term exists that is a function of the pull-up volt-  
to the summing junction at IN . Neglecting internal switch  
resistances and providing that R6 >> R5, the externally  
age, V in Figure 6.  
modified hysteresis (referred to V ) becomes:  
B
A
R4  
R6  
Operation with Supply Transients over 40V and Hot  
Swapping  
VHEXT VHYS(VA) + V  
B
Since the amount of hysteresis is to be doubled, the  
second term in the above expression needs to be about  
The circuit in Figure 7(a) allows the LTC2960 to withstand  
high voltage transients. The magnitude of the voltage  
transients that can be absorbed is set by the voltage rat-  
ing of RZ. A TT-IRC pulse-withstanding surface mount  
1206 resistor with a nominal voltage rating of 200V is  
used. The external 30V Zener diode (Z1) and the 143kΩ  
300mV. With a logic supply, V , equal to 3V, the ratio R4/  
B
R6 should be about 0.1. Choosing R6 to be 6.81M satis-  
fies the design criteria.  
TheadditionofR6modifiestherisingandfallingthresholds  
originally determined by R4 and R5. The modified rising  
threshold becomes:  
current limiting resistor (RZ) protect the V supply pin  
IN  
of the LTC2960. Note that there is a speed penalty which  
is the time constant determined by RZ and C1, 14.3ms in  
R4 R4  
+
this example. If V is below 30V, there is a voltage drop  
V = V + V  
1+  
+
IN  
R
(
TH  
)
HYS  
R5 R6  
across RZ that is dependent on the quiescent current of  
the LTC2960 which is nominally less than 150mV but can  
be as high as 290mV if MR is pulled low. The maximum  
= 400mV + 20mV 1+ 13.98 + 0.1  
(
) (  
)
voltage drop is determined by the maximum specified I  
CC  
= 6.3336V  
and MR pull-up currents. For conditions where the Zener  
conducts current, it can be biased in the microamp range  
owing to the low quiescent current of the LTC2960. For a  
It is apparent that the R4/R6 term does not affect the ris-  
ing threshold significantly resulting in a change of only  
+0.645%. The falling threshold incorporating R6 is:  
supply voltage of 150V, the Zener is biased <1mA. When  
+
input pins are used to sense V , the input pins ADJ/IN /  
IN  
R4 R4 VTH – V  
IN absolutemaximumratingof3.5Vmustnotbeexceeded.  
B
V = VTH 1+  
+
F
V can be a maximum of 8.75x the lowest programmed  
R5 R6 VTH  
IN  
threshold to satisfy this condition. For a maximum V of  
IN  
150V, the lowest programmable threshold is >17V.  
= 0.4V 1+ 13.98 – 0.65 = 5.732V  
(
)
2960f  
11  
LTC2960  
APPLICATIONS INFORMATION  
V
MAX 200V  
When a supply voltage is abruptly connected to the input  
resonantringingcanoccurasaresultofseriesinductance.  
The peak voltage could rise to 2x the input supply but in  
practice can reach 2.5x if a capacitor with a strong volt-  
age coefficient is present. If a 12V supply is hot plugged  
IN  
RZ  
143k  
PWC1206LF143kJ*  
V
CC  
Z1  
C1  
0.1μF  
50V  
LTC2960  
*TT-IRC  
BZX84C30  
BV = 30V  
the resulting ringing could reach the abs max of V . Any  
CC  
circuit with an input of more than 7V should be scrutinized  
for ringing. Circuit board trace inductances of as little as  
10nH can produce significant ringing.  
(a)  
V
IN  
RS  
20  
One effective means to eliminate ringing is to include a  
10–100Ω resistance in series with the supply input before  
V
CC  
theV capacitorshowninFigure7(b).Thisprovidesdamp-  
C1  
0.1μF  
50V  
CC  
LTC2960  
ing for the resonant circuit but imposes a time constant to  
V . In Figure 7(b), the time constant of RS and C1 is 2μs.  
CC  
2960 F07  
(b)  
Figure 7. Operation with High Voltage Transients  
and Hot Swapping  
TYPICAL APPLICATIONS  
Configurable Regulator UVLO and Low Battery  
Indicator  
internal switch when it reaches 2.5V. With a threshold of  
5.537V the LTC2960 OUT output disables the load before  
this occurs in order to prevent damage to the batteries.  
In addition to the UVLO signal, the LTC2960 provides a  
low battery indicator for the system. Figure 9 shows an  
alternative arrangement in which the LTC2960 monitors  
the output of the 3.3V regulator to provide a reset signal.  
In the circuit of Figure 8, the high voltage open drain  
OUT output is used as a configurable UVLO signal for a  
switching regulator. A Li-Ion battery can contain protec-  
tion circuitry that open circuits its terminals through an  
BUCK CONVERTER  
V
NOT ALL LT3991 COMPONENTS SHOWN  
BAT  
6V TO 8.4V  
V
OUT  
V
V
IN  
OUT  
3.3V  
R3  
R4  
10M  
LT3991  
C2  
5.11M*  
R5  
1M  
+
+
EN  
47μF  
16V  
Li-Ion  
4.2V  
V
GND  
C1  
0.1μF  
25V  
CC  
RT  
IN  
OUT  
+
R2  
49.9k  
LTC2960-1  
Li-Ion  
4.2V  
ADJ  
RST  
LOW BATTERY  
MR  
R1  
348k  
GND  
2960 F08  
UVLO FALLING THRESHOLD = 5.537V  
RESET FALLING THRESHOLD = 6.33V  
*VISHAY-DALE CRCW SERIES 0603 1%  
Figure 8. Configurable Regulator UVLO and Low Battery Indicator  
2960f  
12  
LTC2960  
TYPICAL APPLICATIONS  
BUCK CONVERTER  
V
BAT  
NOT ALL LT3991 COMPONENTS SHOWN  
6V TO 8.4V  
V
OUT  
V
V
IN  
OUT  
3.3V  
R5  
10M  
R2  
+
+
LT3991  
C2  
Li-Ion  
4.2V  
6.04M  
R4  
R6  
1M  
EN  
47μF  
16V  
V
C1  
0.1μF  
25V  
CC  
2.26M  
RT  
OUT  
GND  
LTC2960-1  
+
IN  
MR  
ADJ  
Li-Ion  
4.2V  
RST  
RESET  
R1  
402k  
R
*
GND  
ESD  
R3  
402k  
10k  
2960 F09  
UVLO FALLING THRESHOLD = 6.410V  
RESET FALLING THRESHOLD = 2.649V  
*OPTIONAL RESISTOR FOR ADDED ESD PROTECTION  
Figure 9. Configurable Regulator UVLO and Supervisor  
M2  
Si4435  
M1  
Si4435  
V
BAT  
6V TO 8.4V  
V
OUT  
R8  
10k  
1N5245  
15V  
R7  
1M  
+
Li-Ion  
4.2V  
R2  
5.6M*  
R6  
100k  
R4  
6.04M*  
R5  
10M  
V
RT  
C1  
0.1μF  
25V  
CC  
OUT  
ADJ  
LTC2960-2  
+
Li-Ion  
4.2V  
IN  
RST  
LOW BATTERY  
R1  
402k*  
R3  
402k*  
MR  
GND  
2960 F10  
IN FALLING THRESHOLD = 5.974V  
ADJ FALLING THRESHOLD = 6.410V  
*VISHAY-DALE CRCW SERIES 0603 1 %  
Figure 10. Battery Disconnect to Protect Against Deep Discharge  
BUCK CONVERTER  
V
NOT ALL LT3991 COMPONENTS SHOWN  
IN  
IRLR2908  
4V TO 27V  
12V  
VEHICLE BATTERY  
V
OUT  
V
IN  
V
OUT  
3.3V  
R8  
R2  
R7  
1M  
R4  
R6  
6.04M  
LT3991  
GND  
102k  
825k  
1.78M  
C2  
EN/SS  
FB  
22μF  
25V  
V
GATE OUT  
FB  
CC  
R3  
1M  
V
DV  
CC  
CC  
+
C1  
1μF  
50V  
LT4356  
IN  
ADJ  
LTC2960-3  
FLT  
OUT  
RST  
UV  
OV  
GND  
R7  
4.99k  
R1  
80.6k  
R5  
1M  
MR  
GND  
2960 F11  
+
IN FALLING THRESHOLD = 4.49V  
ADJ FALLING THRESHOLD = 2.816V  
Figure 11. Automotive Supervisor  
2960f  
13  
LTC2960  
TYPICAL APPLICATIONS  
The LTC2960-2 in Figure 10 is yet another way to prevent  
excessive discharge of a battery. The high voltage OUT  
output is used to drive the gate of a PMOS switch to in-  
Micropower Power Supply Sequencer and Supervisor  
Figure 13 illustrates multiple uses for the LTC2960 in a  
power supply system. U1 is a power supply sequencer  
terrupt the path to V  
in the event of an undervoltage  
+
OUT  
whose IN input monitors V and enables the 5V switch-  
IN  
condition. When the battery stack voltage is above the  
ing regulator. The ADJ input monitors the output of the  
5V switching regulator and enables the 1.8V LDO after a  
16ms Reset Timeout Period. U2 is a supervisor monitor-  
ing the 5V and 1.8V outputs. The OUT output by virtue  
of the MR pin, keeps the RST output low until the 1.8V  
supply is ready.  
IN rising threshold of 5.972V, the PMOS switch is turned  
on. The LTC2960-2 also supervises V  
to provide a low  
OUT  
batterysignalasanearlywarningofimpendingshutdown.  
A 10k resistor is included in series with the V pin to limit  
CC  
current in the event of a reverse battery condition. In all  
three examples, the load drops to <2.5μA typically and  
excessive battery drain is prevented.  
V
OUT  
V
IN  
V
OUT  
LT3009-5  
SHDN  
IN  
5V  
16.4V  
C2  
1μF  
16V  
R3B  
R4  
10k  
20mA MAX  
118k*  
Automotive Supervisor (LTC2960 H-Grade)  
R3A  
7.32M*  
GND  
The circuit in Figure 11 uses the LTC2960-3 (H-grade) as a  
lowvoltagesupervisorcapableofoperatingintemperatures  
upto125°Cinautomotiveenvironments.TheLT4356surge  
V
CC  
C1  
0.1μF  
50V  
DV  
CC  
ADJ  
stopper limits V to 27V under the alternator load dump  
IN  
R2  
68k*  
LTC2960-4  
condition. The LT3991 buck regulator in conjunction with  
the LTC2960 draw <10μA quiescent current for no load,  
which limits the drain on the vehicle battery even after  
long periods of inactivity.  
IN  
RST  
FAULT  
OUT  
MR  
R1  
182k*  
GND  
2960 F12  
Window Comparator for High Voltage Input  
UPPER THRESHOLD = 16.897V  
LOWER THRESHOLD = 12.3V  
*VISHAY-DALE CRCW SERIES 0603 1%  
The LTC2960-4 can be configured as a window compara-  
tor to monitor high voltage supplies or battery stacks as  
Figure 12. Window Comparator for High Voltage Input  
shown in Figure 12. A fault signal is generated if V is out  
IN  
ofregulation. TheOUToutputoftheLTC2960-4isfedback  
into the MR input to drive the RST output. A micropower  
LDO provides bias to the active pull-up DV supply for  
CC  
low static current draw in the outputs.  
2960f  
14  
LTC2960  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DC8 Package  
8-Lead Plastic DFN (2mm × 2mm)  
(Reference LTC DWG # 05-08-1719 Rev A)  
R = 0.115  
TYP  
5
8
R = 0.05  
0.70 0.05  
TYP  
0.40 0.10  
2.55 0.05  
1.15 0.05  
2.00 0.10 0.64 0.10  
(4 SIDES)  
(2 SIDES)  
0.64 0.05  
(2 SIDES)  
PIN 1 NOTCH  
R = 0.20 OR  
0.25 × 45°  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
PACKAGE  
OUTLINE  
CHAMFER  
(DC8) DFN 0409 REVA  
4
1
0.23 0.05  
0.45 BSC  
0.25 0.05  
0.45 BSC  
0.75 0.05  
0.200 REF  
1.37 0.10  
(2 SIDES)  
1.37 0.05  
(2 SIDES)  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
NOTE:  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
TS8 Package  
8-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1637 Rev A)  
2.90 BSC  
(NOTE 4)  
0.40  
MAX  
0.65  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.22 – 0.36  
8 PLCS (NOTE 3)  
0.65 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.95 BSC  
TS8 TSOT-23 0710 REV A  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
3. DIMENSIONS ARE INCLUSIVE OF PLATING 6. JEDEC PACKAGE REFERENCE IS MO-193  
2960f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC2960  
TYPICAL APPLICATION  
BUCK CONVERTER  
NOT ALL LT3991 COMPONENTS SHOWN  
5V  
V
6.6V < V < 36V  
IN  
V
OUT  
IN  
OUTPUT  
R3  
10M  
C2  
47μF  
16V  
R2  
6.04M  
LT3991  
EN  
R5  
3.48M  
LTC2960-1  
GND  
1.8V  
V
OUT  
ADJ  
C1  
0.1μF  
25V  
CC  
+
IN  
OUT  
LT3009-1.8  
OUTPUT  
R6  
1M  
C3  
IN  
SHDN  
1μF  
15ms DELAY  
RST  
GND  
10V  
U1  
R8  
1.3M  
R4  
402k  
R1  
402k  
MR  
RT  
GND  
R9  
1M  
LTC2960-1  
V
CC  
RT  
ADJ  
+
U2 IN  
V
SUPPLY UVLO = 6.410V  
IN  
200ms DELAY  
1.8V SUPPLY UVLO = 3.863V  
RESET THRESHOLD = 1.693V  
OUT RST  
RST  
MR  
R7  
402k  
GND  
2960 F14  
Figure 13. Micropower Power Supply Sequencer and Supervisor  
RELATED PARTS  
PART NUMBER  
LTC1326  
DESCRIPTION  
COMMENTS  
Micropower Triple Supply Monitor for 5V/2.5V, 3.3V and ADJ  
Micropower Triple Supply Monitor for 2.5V/5V, 3.3V and ADJ  
Micropower Triple Supply Monitor with Open-Drain Reset  
Micropower Triple Supply Monitor with Open-Drain Reset  
Micropower Triple Supply Monitor with Push-Pull Reset Output  
4.725V, 3.118V, 1V Threshold ( 0.75%) and ADJ  
Adjustable Reset and Watchdog Timeouts  
Individual Monitor Outputs in MSOP  
5-Lead SOT-23 Package  
LTC1726  
LTC1727  
LTC1728  
LTC1985  
5-Lead SOT-23 Package  
LTC2900/LTC2901/ Programmable Quad Supply Monitor  
LTC2902  
Adjustable Reset, Watchdog Timer and Tolerance, 10-Lead  
MSOP and DFN Packages  
LTC2903  
Precision Quad Supply Monitor  
6-Lead SOT-23 and DFN Packages  
8-Lead SOT-23 and DFN Packages  
LTC2904/LTC2905/ Three-State Programmable Precision Dual Supply Monitor  
LTC2906/LTC2907  
LTC2908  
LTC2909  
Precision Six-Supply Monitor (Four Fixed and Two Adjustable)  
8-Lead SOT-23 and DFN Packages  
Precision Triple/Dual Input UV, OV and Negative Voltage Monitor  
Shunt Regulated V Pin, Adjustable Threshold and Reset,  
CC  
8-Lead SOT-23 and DFN Packages  
LTC2910  
Octal Positive/Negative Voltage Monitor  
Separate V Pin, Eight Inputs, Up to Two Negative Monitors  
CC  
Adjustable Reset Timer, 16-Lead SSOP and DFN Packages  
LTC2912/LTC2913/ Single/Dual/Quad UV and OV Voltage Monitors  
LTC2914  
Separate V Pin, Adjustable Reset Timer  
CC  
LTC2915/LTC2916/ Single Voltage Supervisors with 27 Pin-Selectable Thresholds  
LTC2917/LTC2918  
Manual Reset and Watchdog Functions, 8- and 10-Lead  
TSOT-23, MSOP and DFN Packages  
LTC2934  
Ultralow Power Supervisor with ADJ and PFI Inputs  
500nA Quiescent Current, 2mm × 2mm 8-Lead DFN and  
TSOT-23 Packages  
LTC2935  
Ultralow Power Supervisor with Eight Pin-Selectable Thresholds  
500nA Quiescent Current, 2mm × 2mm 8-Lead DFN and  
TSOT-23 Packages  
2960f  
LT 0312 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2012  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY